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SCOPE 

Process measurements are subject to two types of errors: 
random errors which are commonly assumed to be indepen- 
dently and normally distributed with zero mean, and gross er- 
rors which are caused by nonrandom events such as leaks, de- 
positions, and inadequate accounting of departures from steady 
state operations as well as by measurement biases and mal- 
functioning instruments. In comparison with the random errors 
there should normally be a very small number of gross errors 
present in any given set of data. Nonetheless their presence in- 
validates the statistical basis of reconciliation procedures which 
are used to enhance the accuracy of process data burdened with 
random errors. It is therefore important to detect, identify, and 
remove gross errors before final data reconciliation. 

Three types of statistical tests have been proposed for gross 
error detection. Test statistics based on the residuals or imba- 
lances of the constraints either individually (normal distribution 
test) or collectively (chi-square test) have been proposed by Reilly 
and Carpani (1963), Almasy and Sztano (1975) and Mah et al. 
(1976). However, in order to identify the sources or locations of 
the gross errors these tests must be supplemented by an identi- 

fication algorithm or procedure. This requirement is obviated 
in the measurement test proposed by Mah and Tamhane 
(1982). 

In this paper we derive certain useful results concerning the 
partition of information for data reconciliation and gross error 
detection, and the uniqueness of the test statistics for the mea- 
surement test. We study the performance of this test as mea- 
sured by its power. The power of the test is the probability of 
correctly detecting and identifying gross errors when they are 
present in the process data. Mah and Tamhane (1982) gave an 
upper bound on the power of the measurement test when exactly 
one gross error is present in the measurements. In this paper we 
continue to restrict our consideration to the presence of only a 
single gross error. We explore the influence of different pa- 
rameters on the power of the test. Our aim is to evaluate the 
actual performance of the test and to provide guidelines on its 
applicability. Since the power of the measurement test is diffi- 
cult to evaluate analytically, it is estimated under different 
conditions using Monte Carlo simulattons. 

CONCLUSIONS AND SIGNIFICANCE 

The results on the information partition between data rec- 
onciliation and gross error detection were discussed without 
proofs in an earlier paper (Mah and Tamhane, 1982). In this 
paper we provide a derivation of these results and broaden the 
treatment to generalized linear reconciliation with missing 
measurements. In general, V and W, the covariance matrices 
of residuals, will be rank deficient, and also the test statistics 

associated with different measurements may be numerically 
equal, leading to possible ambiguity in the identification of a 
gross error. The necessary and sufficient conditions for noni- 
dentifiability are established (Theorem 3 and corollary) and a 
procedure is given for prescribing the modified level of signif- 
icance used in the test. 

A comprehensive evaluation of the measurement test was 
carried out based on two different definitions of the power of 
this test. I t  was found that the effect of constraints, network 
configuration, and position of measurement could be ade- 
quately accounted for by the constraint matrix B. Factors which 
make the columns of B more proportional tend to reduce the Correspondence concerning this paper should be a d d r e d  to R. S. H. Mnh 
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powers associated with these columns (streams) and to make 
them equal to one another. Factors which make them less pro- 
portional tend to improve the powers. 

Probably the single most important factor affecting the 
powers of the test is the numerical ratio of gross error to stan- 
dard deviation, 6/u. For problems with unequal measurement 
standard deviations the powers are also dependent on the range 
and distribution of u's. The influence of these factors and of the 
degrees of adjacent vertices and the number of measured vari- 
ables on the powers as defined by Eqs. 42 and 43 are summa- 
rized by rules which are based on simulation results. 

From the viewpoint of enhancing the power of the measure- 
ment test in gross error detection our findings suggest that 
one: 

1. Avoid making the columns of the constraint matrix pro- 
portional, for instance by incorporating appropriate component 
material or energy balances. 

2. Equalize the standard deviations of measurement errors 
as much as possible by selectively improving measurements 
with large standard deviations. 

3. Consider that if it is important to detect a gross error as- 
sociated with a stream connected to nodes with large de- 
grees-i.e., (djj + doj) is large-then duplicate instrumentation 
may be necessary. 

Finally, through our investigation we have developed a 
comprehensive simulation procedure for estimating the powers 
of the test. This procedure may be used to design the gross error 
detection scheme for any specific application. 

GENERALIZED LINEAR RECONCILIATION 

Three classes of state variables and parameters are involved in 
the generalized linear reconciliation. First, there is a class of state 
variables and unknown parameters x which are related to the 
measured variables 7 through a measurement matrix D. In the 
absence of gross errors this relationship may be expressed as 

Y =  y + t = Dx+ c (1) 

where c denotes an (s X 1) vector of measurement errors, which 
is commonly assumed to be normally distributed with a zero mean 
vector and a known covariance matrix Q. The measurement matrix 
D is an (s x p) matrix of known constants with full column rank 
p 5 s .  

In general, there may also be two other classes of state variables 
and parameters in addition to x. Let c' be a vector of parameters 
whose values are known precisely, and let u be a vector of pa- 
rameters which are not directly related to the measurements 
through Eq. 1. Then the generalized constraints are 

A ~ x  + A ~ u  = C' (2) 

where A1 is an (n X p) matrix of known constants and Az is an (n  
X m) matrix of known constants. The general linear reconciliation 
problem is the least-squares estimation of x and u, 

min (y - Y)TQ-l (y  - 7) (3) 
x,u 

subject to the affine constraints, Eq. 2. 

and let Pbe  a ( t  X n )  matrix such that 
Let (4;) be the solution to this least-squares estimation problem 

PA2 = 0. (4) 

In other words, the rows of Pare orthogonal to the column space 
of Az. We shall refer to Pas a projection matrix. A reconciliation 
problem is unconstrained if x can be estimated without reference 
to the constraints, Eq. 2. 

Theorem 1. The reconciliation problem defined by Eqs. 1, 2, 
and 3 is constrained, if and only if Az is of less than full row 
rank. 
Proof: Suppose the reconciliation problem is unconstrained. Then 
for any x whatsoever, which is estimated by Eq. 3, the constraints 
of Eq. 2 can always be satisfied by a suitable choice of u. That is 
to say, Eq. 2 can always be rearranged to yield 

A ~ u  = C' - A ~ x  = V. (5 )  

Clearly, v lies in the column space of Az, and yet v can be arbi- 
trarily chosen so long as it remains in R". The necessary and suf- 
ficient condition for this to be true is that dim (column space of Az) 
= rank(A2) = n. Hence, the theorem. 
Note that when Az is of full row rank, Pis a null matrix. 

In the subsequent treatment we shall assume that 

rank(A2) = q (6) 

and 

t = n - q .  (7) 

Theorem 2. The reconciliation problem defined by Eqs. 1, 2, 
and 3 may be reduced to a reconciliation problem involving no 
unmeasured variables. The unmeasured variables may be com- 
puted from the estimates of the measured variables in a subsequent 
step. 
Proof: Premultiplying constraint Eq. 2 by the projection maxtrix 
P, we obtain 

PAlx = Bx = Pc' = c (say). (8) 

Let x* be the solution to the reconciliation problem defined by Eqs. 
1,3, and 8, and let u* be computed by solving the equation, 

A ~ u  = c' - A ~ x * .  (9) 

Then clearly, (x*,u*) is also the solution ( i , G )  to the reconciliation 
problem defined by Eqs. 1,2, and 3. 

Theorem 2 is essentially a restatement of the decomposition 
result obtained by Crowe et al. (1983). In the special case of no 
unmeasured variables P = I, as expected. For the flow reconcili- 
ation considered by Mah et al. (1976) Pis the first (N - q) rows of 
the inverse of [AlsAz] in their Eq. A2. 

In view of Theorem 2, we need only consider reconciliation with 
all associated variables measured. Without any loss of generality 
but with the benefit of much simplification we shall henceforth 
consider the reconciliation problem defined by Eqs. 1,3, and the 
constraints. 

B x =  c. (10) 

Analytical solutions for the constrained and unconstrained prob- 
lems were given as Eqs. 3 and 4 in an earlier paper by Mah and 
Tamhane (1982), where b, b,, and A should be replaced by x, x,, 
and B in our present notation. 
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GROSS ERROR DETECTION BY MEASUREMENT TEST 

In addition to the random measurement errors the raw process 
data may also contain grm errors which are caused by nonrandom 
events. Since gross errors are only defined with respect to the 
measured variables, we cannot possibly make any statement about 
gross errors associated with unmeasured variables. We shall 
therefore assume that a decomposition of the type discussed in the 
previous section has already been carried out to transform the 
constraints from Eqs. 2 to 10. 

The different statistical tests for gross error detection have been 
reviewed by Mah (1982) and Crowe et al. (1983). In this paper we 
shall be concerned only with the measurement test proposed by 
Mah and Tamhane (1982). The advantage of this test is that the 
gross error is directly identified with the measurement itself. The 
assumption here is that there is no gross error in the process model. 
Examples of model gross errors are leaks from nodes and departures 
from steady state operations, both of which may be viewed as 
missing arcs in the process digraph. If we can make this assumption, 
then the source of a gross error may be identified directly by this 
test. 

Let r be the vector of measurement adjustments or residuals, 

(11) r = j i -  9 = j i  - D& 

It can be shown that 

r = ( I  - DM)ji - DNc, (12) 

E(r) = 0, (13) 

and 

cov(r) = V =  (I- DM)Q(I- DM)T (14) 

where 

M =  ( I -  NB)(DTQ-'D)-lDTQ-'. (15) 

and 

N = ( DT Q-'D)-lB T [  B( DT Q-lD)-lBT]-l. (16) 

Since r is a linear transformation of y which obeys multivariate 
normal distribution, r is also normally distributed. We can stan- 
dardize the test statistics by dividing each element of r by its 
standard deviation. 

Tamhane (1982) has shown that for a nondiagonal covariance 
matrix Q, a vector of test statistics with the maximal power for 
detecting a single gross error is obtained by premultiplying r by 
0-1. Let 

d = C 1 r  (17) 

Then d is normally distributed with zero mean and covariance 
matrix W, where 

w =  Q-'VQ-1. (18) 

The statistics 

zf = d i I G  

may be used to test for gross error in the ith measurement. It will 
be concluded that a gross error is present in the ith measurement, 
if 

lz f l  > k  (20) 

where k is some critical constant. The choice of k will be discussed 
in a later section of this paper. This test will be referred to as the 

measurement test. In the case of a diagonal covariance matrix, the 
test is unaltered by this premultiplication. 

RANK RELATIONSHIP IN ESTIMATION 

We shall now return to the general linear reconciliation in order 
to examine the relationship between data reconciliation and gross 
error detection. For this purpose we shall refer to the model, Eq. 
1, the constraints, Eq. 10, and the objective function, Eq. 3. 

= 0% the vector of adjusted 
measurements 9 clearly lies in a p-dimensional subspace of R8. This 
subspace is spanned by the column vectors of D. The transformed 
residual vector d, given by Eq. 17, must lie in the (s - p) dimen- 
sional subspace orthogonal to D. 

When the constraints of Eq. 10 are introduced, further restric- 
tions are imposed. Let us consider first the case of linear (homc- 
geneous) constraints (c = 0). Recall that 

B = PA1 (21) 
where A1 is an (n X p) matrix of rank at least (n - 9) and Pis an 
(n - q )  X n matrix of full row rank, and n I p. Therefore, 

rank(B) = n - 9 = t .  (22) 

BlX, + Bzx, = 0 (23) 

xz = -KIB1xi,  (24) 

(25) 

(26) 
In other words, 9 now lies in a (p - t )  dimensional subspace and 
the transformed residual vector d now lies in the (s - p + t)  di- 
mensional subspace orthogonal to it. 

The above discussion pertains to homogeneous constraints. For 
affine constraints (c # 0), we can always make the linear coordi- 
nate transformation, d = x - x, and y' = y - Dx,, where Bx, = 
c. In terms of the transformed variables, we have y' = Dd subject 
to Bx' = 0, which is of the same form as before. Therefore, for af- 
fine constraints we arrive at the Same conclusion that the dimension 
of the estimation space is (p - t )  and the dimension of the residual 
space is (s - p + t ) .  

The trade-off between the estimation space and the residual 
space was previously discussed without proof by Mah and Tamhane 
(1982) and will not be repeated here for the sake of brevity. 

The rank of Vcan be established in the following way. Since we 
can always transform a linearly constrained estimation problem 
into an unconstrained problem, we may write for this purpose 
without loss of generality, 

For the unconstrained case, since 

Let us write the constraints, Eq. 10, as 

where Bz is a nonsingular (t X t )  matrix. It follows that 

9 = Dl4 + D& = [Di - D2X1B1]i1, 

rank(D1- DzBT'Bl) = p - t. 
and 

M =  (DTQ-lD)-lDTQ-l (27) 

and 

V = [I - o( DT Q-lD)-'DT Q-'1 
X Q [ I -  D(DTQ-lD)-lDTQ-l]T (28) 

with the understanding that D is now an s X (p - t )  matrix. It 
follows that 

rank( V) = rank[I- D(DTQ-'D) -lDTQ-l] (29) 

Now ( I -  D(DTQ-lD)-lDTQ-l] is an idempotent matrix whose 
eigenvalues can only be 0's and 1's (Lapidus, 1962, p. 219). 
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Therefore, its rank must be equal to the sum of its eigenvalues, 
which is in turn equal to its trace (Lapidus, 1962, p. 212). That 
is, 

rank[Z - D(DTQ-lD)- lDTQ-']  
= t r [ I -  D(DTQ-lD)-'DTQ-'] 

= t r [  Is] - t r (  D(DT Q-lD)-'DT Q-'1 
= t r  [ Is] - t r  [ ( DT Q- D)-'DT Q- D]  

= t r [ I s ]  - t r [ l p - t ]  = s - p + t .  (30) 

Finally, since rank( Q) = s, clearly rank( W) = rank( V). 

UNIQUENESS OF TEST STATISTICS 

With reference to Eq. 19 it is possible to have the same I zi 1 for 
different measurements, making the measurements indistin- 
guishable for gross error identification using the measurement test. 
The specific conditions for this occurrence are established in the 
following theorem for the case D = I. 

Theorem 3. Let bf and bj be two columns of B. Then Izj 1 = Iz j  I 
for all 7 if and only if there exists a nonzero constant h such that 

Proof: Substituting D = l i n  Eqs. 12, 15, and 16 we have 
b < = h b j .  

r = QBT(BQBT)-l(B7- c) 

= QBT(BQBT)-'B(B - 9). (31) 

J = (BQBT)-'. (32) 

To simplify the notation let us write 

Then from Eqs. 17 and 19 

zi = d i I G  

Therefore, the theorem is true if and only if 

(33) 

(34) 

which is true if and only if for some nonzero h 

BTJbj = hBTJbj  

or 

Clearly, 

is a sufficient condition. 
To show that it is also a necessary condition let us suppose that 

Eq. 36 is not satisfied. Then Eq. 35 implies that the columns of BTJ 
must be linearly dependent. But since rank(B) = t and r a n k 0  = 
t ,  rank(BTJ) = t .  Therefore, BTJ must be an (n X t )  matrix of full 
column rank. Hence Eq. 36 is also a necessary condition for (z i  I 

Corollary. Let a, and a j  be two columns of Al.  Then if af = ha) 
for some nonzero h, Izr 1 = Izi I for all 7. 

The corollary follows directly from Theorem 3 and definition 
Eq. 21. The necessary and sufficient condition for 121 1 = Izr I may 
be restated as 

= I Z j I .  

P(ai - ha! )  = 0 .  (37) 

Note, however, that although a6 = h a j  is a sufficient condition, it 
is not a necessary condition. Equation 37 will also be satisfied if (ar 

- h a j )  lies in the nullspace of P, i.e., the column space of A2. 
If Q is diagonal, then 

dil& = rtI&. (38) 

In that case Theorem 3 holds also for the test statistics obtained from 
the untransformed residuals r. 

It may be interesting to note that one physical situation fulfilling 
the condition of Theorem 3 arises if we apply the measurement test 
to two streams linking the same pair of nodes in the process digraph. 
This could happen as a result of applying the measurement test to 
a subgraph of the original process digraph. For instance, if we apply 
the test to node b in Figure 3, then all the other physical nodes are 
in effect lumped with the environment node. (See Appendix for 
all the figures and tables.) So far as the test is concerned both 
streams 2 and 4 link node b to the environment node. In fact, if the 
subgraph consists of only one node, then all its stream flow rates 
have the same Izi 1, and the measurement test becomes identical 
with the nodal test. 

SIGNIFICANCE LEVEL USED IN MULTIPLE TESTS 

It should be clear from Eq. 30 and the rank of Wthat Wwill be 
a full rank matrix if and only if t = n = p and q = 0. Except for this 
case W will be a singular matrix, but we may still have a set of 
distinct values for Izf I .  In our earlier note (Mah and Tamhane, 
1982) we pointed out that even in the situation in which a single 
gross error is suspected but the source of the gross error is unknown, 
it is appropriate to choose k as the critical point Z5/z instead of Z a p  
in Eq. 20, where 

(39) 

and Z p p  and Z , / 2  denote the upper p/2 and 0112 points of the 
standard normal distribution, respectively. If the number of distinct 
values of (zf  I is s' (Ss), then a modified level of significance 

(40) 

should be used to give a less conservative test. In general, it is not 
possible to replace s' in Eq. 40 by a smaller (less conservative) 
numbers" = rank (W) = s - p + t .  

The choice /3 = (1 - ( I  - a)l /s]  given by Eq. 39 is based on the 
following inequality of Sidak (1967): Let z1,z2, . . . , zs have a joint 
normal distribution with zero means, unit variances and arbitrary, 
possibly singular, correlation matrix. Then 

p = 1 - (1 - a)'/? 

p' = 1 - (1 - a ) l / S '  

The assumptions for Sidak's result hold true under H,: There 
are not gross errors present. Now we would like to set the proba- 
bility of type I error less than or equal to a. The lefthand side (LHS) 
of Eq. 41 is the probability of not committing a type I error. It 
should, therefore, be set greater than or equal to 1 - a. By choosing 
each probability in the righthand side (RHS) equal to (1 - a ) l / S  

we obtain a product which is equal to 1 - a and which is also a 
lower bound on the LHS. This choice gives rise to k = Z g / 2  where 
p = 1 - (1 - a)l/s.  It is a conservative bound in the sense that P 
{at least one Izf 1 > k] 5 a under H,. 

If there are linear dependencies among the zi's, then it is not 
known, in general, how to sharpen the above inequality except for 
the special case of zf = &zj. In this case, lzi I I k implies lz j  I I 
k and therefore we can take the LHS probability in Eq. 41 over only 
s' (5s) distinct Izi 1 's and thus the product on the RHS over only 
those distinct Izi I 's. This fact is used in our Eq. 40. 

Notice that this simplification is not obtained even in the special 
cases of proportional zi's and of zf 's related by a linear equation. 
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For instance, if zi = 274, I zf I 5 k does not imply I zj I 5 k. Crowe 
(1984) has speculated that s’ in Eq. 40 should be replaced by rank 
( W). However, the validity of this procedure is questionable in view 
of the discussion above. 

POWER OF THE MEASUREMENT TEST 

The above results turn out to be very helpful in interpreting the 
computer simulation results in evaluating the power of the mea- 
surement test. Depending on the assumption made, the power of 
the measurement test may be defined in two different ways: 

Case A. At most one gross error is known to be present but its 
location is not known beforehand. If a gross error is present in the 
ith measurement, then the power of the test for the ith measure- 
ment, 

Pai=P[ l z f l  1 (zj1,forallj # i a n d  1zi1 >k]. (42) 

Case B. No prior knowledge is available on the number and lo- 
cations of gross errors. If, in fact, only one gross error is present in 
the ith measurement, an alternative definition is 

P h  =P[lzjl I k,forall lzjl # )zlmaxand lz i l  = Izlmax>kl 
(43) 

where 

(44) 

This definition takes into account the cases in which two or more 
columns of matrix B are proportional, giving rise to two or more 
zf ’s having equal value Iz 1- (Theorem 3 and corollary). However, 
it is tacitly assumed that among the (zi I ’s tied for lz  lmax and ex- 
ceeding the critical value k, Izi 1 will be correctly identified as the 
one associated with the gross error. The definition also ignores the 
fact that if some Iz j  I is tied with Izi I for Iz I-, then measurement 
j may be incorrectly identified as containing a gross error. 

SIMULATION EXPERIMENTS 

The power of the test in either form Par or P h  is difficult to 
evaluate analytically because of the correlations among the 21’s. 

But estimates of these values may be obtained by computer sim- 
ulation. In each simulation a measurement vector f is generated 
according to the following equation: 

f = y + E + 6  (45) 

where y is the vector of true values, E is the vector of random errors, 
and 6 is the vector of gross errors. We only consider 6 vectors with 
one nonzero element > 0 corresponding to the measurement in 
which a gross error is present. In our simulations the measured 
variables are mass flow rates in flow networks. Given a set of “true” 
values, normally distributed univariate random errors ci with 
standard deviations as prescribed for the measurements are gen- 
erated using subroutine GGNML (FORTRAN 77 IMSL Library). 
The random errors are generated in a univariate manner, because 
Q is assumed to be diagonal for the sake of simplicity and 
clarity. 

A simulation run consists of generating NT realizations of the 
measurement vector according to Eq. 45 with a gross error 6 
placed in a particular measurement and repeating this process for 
all s measurements. In a given realization the s vectors f corre- 
sponding to gross errors placed in s measurements are generated 
from the same c vector. This is done as a variance reduction tech- 

nique to yield more precise comparisons between the powers as- 
sociated with different measurements. For a given 7 vector cor- 
responding to a gross error in the ith measurement the vector of 
test statistics z = (z1,z2, . . . z , ) ~  is computed according to Eq. 33, 
where 

bfJB(f - 9) = bTJB(c + 6 )  
1 5 j I s .  (46) 

zj = (bTJbj)’” (bTJbj)’/’ 

Note that we assume further 13 = I(or y = x), which allows us 
to illustrate the results predicted by Theorem 3 and its corol- 
lary. 

If N,i is the number of realizations satisfying the condition, 

lzfl l ) z l l f o r a l l j # i a n d l z f l > k  (47) 

and N h  is the number of realizations satisfying the condition, 

lzjl I k , f o r a l l J ~ j J  # lzlmaxand)zi) = I z J m a X > k  (48) 

then the powers Par and P h  may be estimated as follows: 

Pai = N a i / N T  (49) 

Ph = N ~ / N T .  (50) 

Pa{ 1 Ph. (51) 

and 

Since Eq. 48 is a more restrictive condition than Eq. 47, 

Since the outcome of each simulation realization is-0 or 1 and Naf 
and N h  are sums of these 0-1 variables, Par and P h  are sample 
means of Bernoulli distributed variables. We may construct (1 - 
a) level two-sided confidence intervals on Paf and P h ,  using the 
following formula (Hines and Montgomery, 1980): 

P i - E S P f  I p f  + E  (52) 
where E is the error in the estimate Pi 

and Pi may be Paf or Ph. If a confidence level (1 - a) and an upper 
limit on the estimation error E are specified, Eq. 53 may be used 
to determine the minimum value of N T .  In our simulation we chose 
a = 0.05 (Z,/z = 1.96) and E 5 0.01. Then using the fact that E 
is maximum when Pi = 0.5, we obtain 

N T  29,600. 

On this basis we set the total number of realizations at 10,OOO. In 
practice the accuracy obtained is better than the second decimal 
place indicated by this choice. Three decimal places have been 
chosen to report all simulation results. 

In evaluating the simulation results we need a criterion to de- 
termine statistically significa_nt diffeyences. Suppose that for the 
same run estimated powers Paf and Pair are to be compared. For 
a particular realization let z and z‘ be the corresponding vectors 
of test statistics. Since <and z‘ are based on the same c, they are 
correlated, and hence Par and Pait are correlated. Therefore we 
apply McNemar’s test (Conover, 1980), which is a technique for 
comparing correlated proportions. This test is illustrated in the 
tableau below for comparing the estimated powers of two flow rates 
in a flow network: 

Stream i’ 
Reject Not Reject 

Stream i 
Reject 
H0-i 
Not Reject 
HOr 

NC N D  
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Estimates of the powers associated with the two streams are given 
by 

Pi = (NA + N B ) / N T ;  @t’ = (NA -k N C ) / N T  (54) 

We reject H,: P ,  = P p  and conclude that Pi and P,, are different 
if 

(55) 

where x:,~ is the upper a point of the x2 distribution with 1 degree 
of freedom. In our computation LY is set at 0.05. McNemar’s test 
is applied to all estimates associated wtih the same network. Where 
appropriate, the results are listed in the last columns of Tables 

For runs involving different networks, different seeds are used 
to generate random error vectors 6. The test vectors z for different 
runs are independent. Hence the corresponding power estimates 
are also independent. The test of the equality of two independent 
proportions (Hines and Montgomery, 1980) is used in comparing 
the estimates of powers associated with streams corresponding to 
different networks. The results of this test are used to compare runs 
7.1 and 8. 

Since Pa, and P h  depend on the distributions of the zi’s, we must 
examine Eq. 46 to determine factors influencing the power of the 
test. These factors may be classified as follows: 

1. Constraints, network configuration, and stream position. 
These factors are summarized by the information contained in the 
constraint matrix B. 

( N B  - NCl2/ (NB + NC) > d , l  

3-8. 

2. Magnitude of the gross error. 
3. Magnitudes and distribution of standard deviations of mea- 

surements, which information is contained in the covariance matrix 
Q. 

4. Number of measurements or size of the network. 
These factors are further discussed in the next section. 

Many simulation experiments were carried out to discern the 
influence of these factors. Twelve of these computer runs covering 
eight different configurations are listed in the Appendix. In these 
experiments all stream flow rates were “measured,” i.e., B is the 
same as A1 ( A  for short). Standard deviations were taken to be the 
same for all measurements except in Run 7.2 which was designed 
to study the effect of standard deviations. The critical value k in 
Eq. 20 was given by Zg/g with p computed using Eq. 40 and a = 
0.1. 

To facilitate cross reference, the first digit of the run number 
is the same as the number of the figure showing the flow network. 
The data and results are shown in tables with the same number and 
labels a and b. For instance, run 1.1 is based on the flow network 
shown in Figure 1. The run data are shown in Table l . l a  and the 
simulation results in Table 1.1b. 

To expedite the discussion and interpretation, we shall first 
present an analysis and summary of the influence of the different 
factors and then refer to the simulation results to illustrate these 
points. 

Now suppose that variances are equal for all measurements, 
then 

In this case the influence of the common standard deviation is 
decoupled from that related to the constraint matrix A and the gross 
error 6. The impact of these factors on the power of the test can be 
summarized by the following rules. 

1. Constraints and network configurations. The most notable 
effect of these factors is in the way they affect the proportionality 
in the columns of the constraint matrix A .  If two or more columns 
of A are proportional, the Izi 1’s and the Pa,’s and Ph’s are the same 
for the corresponding streams (Theorem 3 and corollary). Fur- 
thermore the powers associated with these streams will be lower 
than those associated with the nonproportional streams. Constraints 
and configurations which tend to make the columns of A more 
proportional tend to reduce the powers associated with the corre- 
sponding streams and to make them equal to one another. 

2. Position of a gross error in the network. 
(a) Pa, is generally inversely proportional to the total number 

of streams incident with the nodes adjacent to the stream containing 
a gross error. In other words, 

where d, is the number of streams (regardless of signs) incident 
with the node for which stream j is an inflow and do, is the corre- 
sponding number for the node for which stream j is an outflow. 
External streams are considered to be incident with the environ- 
ment node. 

For a stream adjacent to a node of degree 2 (i.e., d,, or d,, is 2), 
the above rule (a) is replaced by the following rules: 

(b) The power associated with such a stream is always greater 
than that associated with any other stream with the same (dtj + 
dof)  for which d, # 2 and do, # 2. 

(c) Two such streams adjacent to a common node have the same 
power regardless of the degrees of their other adjacent nodes. 

(d) The power is enhanced if the nodes of degree 2 form a se- 
quence. The longer the sequence, the higher the power Pat asso- 
ciated with the incident streams. 

P h  obeys Rules 2c and 2d, but shows considerable deviation from 
Rules 2a and 2b, especially at high values of 6/a. 

3. Magnitude of the gross error. This parameter has a profound 
effect on the powers. As the ratio 6/a  increases, Pa{ increases 
monotonically, but P b  goes through a maximum. 

4. Number of measurements. At the same level of significance 
a, the power of the test is affected by the number of distinct Izt I ’s, 
which corresponds approximately to the number of measured 
variables or the size of the process network. According to Eq. 40, 
as the number of distinct lzl I ’s increases, p decreases, and hence, 
Zp/2 increases, making it more difficult to reject Hd. In general, 
for a stream with a particular value of (dif + do!) the larger the 
network size, the smaller the power associated with that stream. 

FACTORS INFLUENCING THE POWER OF THE TEST SIMULATION RESULTS AND DISCUSSION 

For a single gross error = 6 in the ith measurement, The flow networks for the various runs are shown in Figures 1-8; 
data and results for each run are given in the tables accompanying 
the figures. These are grouped with the Appendix, which lists the 
key features and purpose of each run. 

Same Varlance for All Measurements 

Runs 1.1,1.2,2.1,2.2 and 2.3 were made to verify the influence 
of the constraints. To start with, in run 1.1 the columns of the 

E ( z j )  = w p 6 / G 7  1 5 j I s (56) 

where wp is the (j,i)th element of the matrix 

W =  ATJA. (57) 

Equation 57 is a simplification of Eq. 18 for the case D = 1. 
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constraint matrix A are not proportional (constant multiples of each 
other). In run 1.2 columns 2 and 3 of A are made nearly propor- 
tional by changing flow rates and the coefficients of the second 
constraint-a component material balance.As a result, the powers 
associated with streams 2 and 3 decrease and become almost equal 
in accordance with rule 1. In run 2.1 A is an incidence matrix. 
Columns 6 and 7 of A corresponding to two parallel streams con- 
necting the same pair of nodes are identical, and the corresponding 
powers are also the same in accordance with Theorem 3 and its 
corollary. In run 2.2 the column proportionality is eliminated by 
the addition of one more constraint-a component material bal- 
ance. The powers for streams 6 and 7 are substantially improved 
as predicted by rule 1. On the other hand, if we keep the coeffi- 
cients approximately the same as in run 2.2 but change the true 
flow rates drastically as in run 2.3, the powers remain un- 
changed. 

Runs 3-6, 7.1 and 8 are made to evaluate the influence of the 
position of a gross error in a process network. In all these runs only 
mass conservation constraints are used, i.e., A is an incidence ma- 
trix. Streams with the same powers as determined by McNemar’s 
test are bracketed together. For instance, streams (1,2,4,5) in run 
3 and streams (1,2,3,7) and (4,6) in run 4 have the same powers. 
They illustrate rules 2a and 2c, whereas rule 2b is illustrated by a 
comparison of streams 1 and 2 with stream 5 in run 4 and of streams 
4 and 5 with stream 7 in run 8. Rules 2c and 2d are illustrated by 
streams (1,2), (6,7) and (14,15,16) in run 5, and also by streams 
(21,22) and (8,9,10) in run 6. 

Although the rules on the position of a gross error are deduced 
from empirical observation, they are consistent with the following 
explanation: It is clear from Eq. 46 that a gross error in the ith 
position would affect the test statistic z j  in other positions. The 
number of streams adjacent to stream j as given by (drj + doj) is 
a measure of the potential for the grm error to spread. The greater 
the smearing of the gross error, the less the probability of detecting 
it. Hence, rule 2a. By contrast, streams incident to a common node 
of degree 2 must share the same measurement information. If the 
standard deviations are the same for each measurement, then the 
power must also be the same (rule 2c). In a sequence of nodes of 
degree 2, each additional stream contributes another measurement 
to the common pool of information without any accompanying loss 
or dissipation, which is the basis for rules 2b and 2d. 

The rules on position of a gross error also account for the effect 
of a network configuration. Runs 7.1 and 8 are based on networks 
with the same number of nodes and streams but differently con- 
nected. The test of equality of independent proportions shows that 
the powers are significantly different in streams 2, 4, 5, 6 and 8 
which have adjacent nodes of different degrees in the two runs. The 
orientation of the stream has no effect on the power (see, for ex- 
ample, the power associated with stream 3 in the two runs). 

We should point out that although the above rules by and large 
account for the major effects, deviations from these rules do occur 
in some complex networks, possibly as a result of correlations 
among the 2‘’s which are neglected in the above analysis. Notably, 
in run 5 streams 3 ,4  and 12 have the same (d‘j + doj) but not the 
same powers. Again in the same run the power associated with 
stream 8 is higher than that associated with stream 4 even though 
(d, + do!) is lower for the latter stream. 

Rule 4 is illustrated by comparing the power associated with the 
following streams: Streams (4,6) in run 4, streams (1,3,6,8) in run 
8 and streams (4,15,16,17) in run 6. In all these cases 6/u = 3.5 and 
d, + do, = 7. But the powers are ranked in accordance with rule 
4. 

The dependency of the power of the test on the ratio 6/a is given 
by Eq. 58. This dependency is illustrated in Figure 9 using data 
taken from Run 4. The actual data points lie exactly on the lines. 
They are omitted from the plot for clarity. At low values of 6/u 
both Par and Ph increase with increase in 6/u. But for large 6 / u  

the smearing effect of the gross error causes more than one set of 
I zt 1’s to exceed the critical value k, which disqualifies the correct 
gross error detection according to the condition set in Eq. 43. For 
this reason, while Par continues to increase Ph goes through a 
maximum with further increase of &/a. The definition (Eq. 43) 
can of course be modified to allow for such instances to be counted, 
but at the expense of increasing type I error. One such modified 
definition is the upper bound on the power of the test previously 
given by Mah and Tamhane (1982, Eq. 21). 

Different Variances for Different Measurements 

In the general case in which the variances are different for dif- 
ferent measurements, Eq. 46 shows that Wdepends on the standard 
deviations as well as on the constraints, network configuration, and 
stream positions. We would therefore expect the power of the test 
to depend on all these factors as well as on the ratio 6/u. In order 
to highlight the dependency on the standard deviations a config- 
uration is chosen to make the effect of position as uniform as pos- 
sible. Such a network is shown in Figure 7 for which only two 
categories of positions are allowed. Only mass conservation con- 
straints were used, i.e., A is an incidence matrix. Runs 7.2.1 and 
7.2.2 share the same set of uj’s arranged in two different orders. 
Similarly, runs 7.2.3 and 7.2.4 share another set of uj’s also arranged 
in two different orders. The ratio crmax/umin is larger for the second 
set than for the first set. The effects of the distribution of uj’s are 
highlighted in Table 7 . 2 ~ .  

In general, the range of powers is greater, the larger the ratio 
uma/umh. For instance, in run 7.2.1 6/a = 3.5, umax/cr- = 4, and 
Pa,max/Pa,min = 6.86, while in run 7.2.3 for the same 610, but 
uma,/umin = 500, we have Po,max/Pa,min = 167. 

Equation 58 shows that if the cr’s are the same for all measure- 
ments, E ( q )  is a linear function of &/a, but is not otherwise a 
function of 6. But if u’s are different, then the E ( q )  is a function 
not only of 6/u, but also of 6. However, its dependency on 6 is not 
easily predicted analytically. Our results show that in that case for 
the same 6/u, the lower the value of 6, the lower the power. 

The distribution of uj’s among the streams also influences the 
powers. Table 7 . 2 ~  shows that the powers for streams with the same 
6/u and cr can still be quite different depending on the distribution 
of other uj’s. The effect is illustrated by the comparison of the 
following pairs of streams: Stream 3 for runs 7.2.1 and 7.2.2, stream 
4 for runs 7.2.3 and 7.2.4, stream 5 for runs 7.2.1 and 7.2.2, stream 
5 for runs 7.2.3 and 7.2.4, and stream 6 for runs 7.2.1 and 7.2.2. 

As a comparison, the upper bound on the power of the test was 
also computed for all the runs, although we did not choose to report 
the values in order to economize on the space. It was found that the 
upper bound did not, in general, give a close estimate of the power 
of the test. It gave a good estimate of Par o:dy when cr’s were the 
same or almost the same for all measurements. 

CLOSING REMARKS 

The problem of how to detect and identify gross errors in process 
data has been tackled by numerous investigators for at least two 
decades, beginning with Ripps in 1965. The use of different sta- 
tistical tests has been proposed in published literature since 1972 
(Nogita, 1972; Almasy and Sztano, 1975; Mah et al., 1976; Madron 
et al., 1977; Romagnoli and Stephanopoulos, 1980; Mah and 
Tamhane, 1982; Crowe et al., 1983). However, without exception 
no evaluation of these tests has been given. Typically, the authors 
would apply their proposed test to one or more benchmark prob- 
lems, one of which is usually Ripps’ problem, and claim, implicitly 
or explicitly, that the method “works.” Since the underlying 
problem is stochastic in nature, a single instance has little signifi- 
cance. A “success” does not mean that the test is good any more 
than a “failure” implies that it is bad for detecting gross errors. 
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In this paper the problem of how to evaluate these tests is directly 
addressed for the first time. This was done in the context of the 
measurement test. The results of our investigation provide some 
insight into the influences of various problem parameters on the 
power of the test for gross errors. Two definitions of power were 
used. 

The power of the test i s  profoundly affected by the ratio 6/u. 
Pa{ increases with increasing ratio 6/a, but Ph goes through a 
maximum. If the standard deviations of measurements are unequal, 
the powers will also be dependent on the range and distribution 
of uj’s. The ratio umax/umin is a measure of the spread of powers. 
The larger this ratio, the greater the range of powers. For the same 
6/a ratio, the smaller the 6, the lower the power associated with 
that measurement. 

In this paper we have confined our attention to the detection of 
only one gross error. For scenarios involving the possible presence 
of more than one gross error, a plausible measure of the perfor- 
mance of the test is the ratio of expected number of gross errors 
correctly identified in all runs to the total number of gross errors 
introduced in the same runs. 
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= an (n X p )  matrix of known constants in general 
and an ( N  X S) incidence matrix in partic- 
ular 

= an (n X p )  coefficient matrix of known con- 
stants 

= an (n X rn)  coefficient matrix of known con- 
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= PA1, a ( t  X p )  transformed constraint matrix, 
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= vectors of known constants 
= an (s x 1) transformed residual vector defined 

= number of streams incident with the node for 

= number of streams incident with the node for 

= measurement matrix (s X p )  with full column 

= error in estimation of the power by an average 

= null hypothesis for the stream i 
= a scalar constant 
= identity matrix 
= subscript for the stream containing a gross 

= a nonsingular matrix defined by (BQBT)-’ 
= general subscript for the streams 
= decision criterion (critical value of the test 

= matrix defined by Eq. 15 
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= number of realizations satisfying the condition 

= number of realizations satisfying the condition 

= total number of realizations 
= number of rows of matrix A 
= a (t X n)  projection matrix, defined by Eq. 4 
= power of the test in the case (a), defined by Eq. 

= power of the test in the case (b), defined by Eq. 

= estimated value of Paf 
= estimated value of P b  
= number of columns of matrix A 
= an (S X s) covariance matrix of measurement 

= rank of the constraint matrix A2 
= an (s X 1) vector of residuals defined by Eq. 

= number of arcs or streams 
= number of measured variables 
= number of distinct values of the test statistic 

= rank ( W) 
= (n - 9), number of rows of P 
= an (rn X 1) vector of unmeasured variables 
= an (s X s) covariance matrix of residuals r, de- 

= a vector defined by Eq. 5 
= an (s X s) covariance matrix of transformed 

= ith diagonal element of W 
= vector of true flow rates or state variables 
= a ( p  X 1) vector of estimated flow rates or state 

= the unconstrained least-squares estimate of x 
= an (S X 1) vector of true values of measured 

variables 
= an (S X 1) vector of estimated values of mea- 

sured variables 
= a n  (s X 1) vector of measured or simulated 

variables 
= the upper 4 2  point of the standard normal 

distribution function 
= test statistic for the ith measurement, based on 

the transformed residuals, defined in Eq. 19 
= maximum value among all test statistics zi 

in Eq. 47 

in Eq. 48 

42 

43 

errors 

11 

z 

fined by Eq. 14 

residuals, defined by Eqs. 18 and 57 

variables 

= level of significance 
= modified level of significance, defined by Eqs. 

= an (s X 1) vector of gross errors 
= gross error in the ith measurement 
= an (s x 1) vector of generated random mea- 

= an (s x 1) vector of standard deviations of 

= standard deviation of the ith measurement 

39 and 40 

surement errors 

measurements 

= expected value of 
= probability of 
= trace of the matrix 
= covariance of 
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APPENDIX: LIST OF RUNS 

Net- 
work 

shown Used to 
in Demonstrate 

Run Figure Key Features of Data Effects of Remarks 

1.1 1 uj = 0.25 for all j 
1.2 

2.1 

2.2 2 uj = 0.25 for all j 

1 

2 

uj = 0.25 for all j ;  Two almost proportional 

uj = 0.25 for all j ;  A = incidence matrix; Two 
columns in A 

identical columns in A 

2.3 2 
3 3  
4 4  
5 5  
6 6  

7.1 7 
7.2.1 7 
7.2.2 7 
7.2.3 7 
7.2.4 7 
a 8 

uj = 0.25 for all j 
u, = 0.25 for all j ;  A = incidence matrix 
uj = 0.25 for all j ;  A = incidence matrix 
uj = 0.25 for all j ;  A = incidence matrix 
u1 = 0.25 for all j ;  A = incidence matrix; Two 

uj = 0.25 for all j ;  A = incidence matrix 

uj’s not all same; different values and 

identical columns in A 

distribution of aj; A = incidence matrix 

uj = 0.25 for all j ;  A = incidence matrix 

Constraints 
Constraints 

Constraints 

Constraints 

Constraints 
Position 
Position, 6 /  u 
Position 
Position 

Configuration, Position 
Values and distribution of u, 

among the streams 

Configuration, Position 

Flow rates ratios different from run 1.1 

One more constraint (component balance) added 

Flow rates ratios different from run 2.2 
to the matrix A of run 2.1. 

Data for u given in Table 7.2a; Computer results 
presented in Tables 7.2b-7.2~ 

Same number of nodes and streams as in Fig. 7 
but differentlv arraneed 
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TABLE 1.lb. COMPUTER RESULTS FOR RUN 1.1 

Stream 1 2 3 

S/u = 3.5 [a 0.900 0.559 0.361 

6/a = 5.0 Pa 0.996 0.768 0.615 
4 0.724 0.023 0.064 

t b  0.760 0.080 0.078 

TABLE 1.2a. DATA FOR RUN 1.2 

Stream 1 2 3 

Matrix 1 1 -1 
A 0.7 0.3 -0.316 

1 24 25 Y 
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TABLE 1.2b. COMPUTER RESULTS FOR RUN 1.2 

Stream 1 2 3 
~- ~ 

6/a = 3.5 [a 0.918 0.348 0.326 

610 = 5.0 Pa 0.998 0.504 0.490 
{ b  0.880 0.006 0.008 

PI, 0.947 0.004 0.004 

Flgure 2. Network for runs 2.1-2.3. 

TABLE 2.la. DATA FOR RUN 2.1 

Stream 1 2 3 4 5 6 7  

Matrix A a 1 -1 1 
(= incidence b 1 -1 
matrix) C 1 -1 -1 

d 1 -1 -1 

Y 2 3 3 1 2 1 1 

TABLE 2.lb. COMPUTER RESULTS FOR RUN 2.1 

Stream 1 2 3 4 5 6 7 

6/a =3.5 Pa 0.648 0.596 0.597 0.508 0.656 0.431 0.431 
0.420 0.310 0.313 0.292 0.419 0.360 0.360 

6/a=5.0 Pa 0.936 0.907 0.903 0.844 0.939 0.788 0.788 
P h  0.381 0.242 0.245 0.326 0.380 0.599 0.599 

TABLE 2.2a. DATA FOR RUN 2.2 

Stream 1 2 3 4 5 6 7 

Matrix a 1 -1 1 
A b 1 -1 

C 1 -1 -1 

d 0.5 -0.05 -0.95 
d 1 -1 -1 

Y 2 3 3 1 2 1 1 

TABLE 2.2b. COMPUTER RESULTS FOR RUN 2.2 

Stream 1 2 3 4 5 6 7 

6/a=3.5 P, 0.632 0.579 0.580 0.492 0.638 0.811 0.807 
t b  0.424 0.313 0.317 0.298 0.423 0.694 0.691 

6/a = 5.0 Pa 0.932 0.900 0.897 0.835 0.936 0.989 0.990 
h 0.419 0.262 0.261 0.346 0.421 0.763 0.765 

TABLE 2.3a. DATA FOR RUN 2.3 

Stream 1 2 3 4 5 6 7 
~ 

Matrix a 1 -1 1 
A b 1 -1 

C 1 -1 -1 
d 1 -1 -1 
d 0.5 -0.1 -0.9 

Y 10 100 100 90 10 5 5 

TABLE 2.3b. COMPUTER RESULTS FOR RUN 2.3 

Stream 1 2 3 4 5 6 7 

,632 ,579 ,580 ,492 .638 ,811 ,807 
p b  ,424 .313 ,317 ,298 ,423 .694 ,691 

6/a =3.5 Pa 
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TABLE 3% DATA FOR RUN 3 

Figure 3. Network for run 3. 

Stream 1 2 3 4 5  

Matrix A a 1 -1 -1 
(= incidence b 1 -1 
matrix) 1 C 1 -1 

Y 7 2 5 2 7  

TABLE 3b. COMPUTER RESULTS FOR RUN 3 

Power is 

do/ + 4 2 + 3  3 + 2  3 + 3  2 + 3  3 + 2  samefor: 

6 /u=3 .5  ta 0.606 0.605 0.496 0.605 0.606 (1,2,4,5) 
Pb 0.294 0.295 0.255 0.292 0.296 (1,2,4,5) 

6/u=5.0 pa 0.905 0.907 0.824 0.903 0.903 (1,2,4,5) 
pb 0.209 0.202 0.267 0.202 0.214 (1,2,4,5) 

Stream 1 2 3 4 5 statistically 

Figure 4. Network for run 4. 

TABLE 4a. DATA FOR RUN 4 

Stream 1 2 3 4 5 6 7  

Matrix A a 1 -1 1 1 
(= incidence b 1 -1 
matrix). C 1 -1 -1 

d 1 -1 -1 

Y 1 3 3 1 2 1 1 

TABLE 4b. COMPUTER RESULTS FOR RUN 4 

Power is 

dof + dtf 2 + 4  4 + 2  2 + 3  3 + 4  3 + 3  3 + 4  3 + 2  same for: 
Stream 1 2 3 4 5 6 7 statistically 

0.168 0.166 0.172 0.121 0.156 0.117 0.167 (1,2,3,7) and (4,6) 
0.119 0.120 0.118 0.081 0.106 0.077 0.115 (1,2,3,7) and (4,6) 

6 /u=3 .5  pa 0.556 0.563 0.564 0.429 0.524 0.425 0.563 (1,2,3,7) and (4,6) 
0.269 0.230 0.292 (1,2,3,7) and (4,6) 0.301 0.297 0.299 0.239 

0.884 0.887 0.889 0.777 0.856 0.777 0.887 (1,2,3,7) and (4,6) 6/u=5.0 Pa 
Ph 0.245 0.245 0.247 0.285 0.238 0.286 0.241 (1,2,3,7) and (4.6) 

6/u = 2 P a  
t b  

P b  
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Flgure 5. Network for run 5. 

TABLE 5a. DATA FOR RUN 5 

Stream 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

y 3 3 5 2 1 2 2 1 1 1  2 1 1  2 2 2  

TABLE 5b. COMPUTER RESULTS FOR RUN 5 , 6 / U  = 3.5 

Stream 1 2 3 4 5 6 7 8 Power is statistically same for: 
~~~~~ ~ 

d,,jj-dq 5+2 2+3 3+4 4+3 3+5 4+2 2+3 3+5 
Pa 0.528 0.532 0.438 0.395 0.407 0.526 0.533 0.442 Pa: (1,2,6,7),(3,8,9),(4,5,13),(9,10,11), 
p b  0.389 0.394 0.324 0.277 0.286 0.388 0.397 0.320 (10,11,12),( 14,15),(15,16) 

Stream 9 10 11 12 13 14 15 16 
d,+d‘j 3+3 3+3 3+3 4+3 5+3 3+2 2+2 2+5 

!a 0.450 0.461 0.460 0.470 0.401 0.568 0.573 0.585 Pb:  (1,2,6,7),(3,8,9),(4,5,13),(9,11), 
pb  0.325 0.341 0.334 0.334 0.281 0.439 0.446 0.451 (10,l 1,12),( 14,15,16) 

Flgure 6. Network for run 6. 

TABLE 6a. DATA FOR RUN 6 

Stream 1 2 3 4 5 6 7 8 9 10 11 12 

Y 2 3 2 1 1 1 2 2 2 2 1 1  
Stream 13 14 15 16 17 18 19 20 21 22 23 24 

V 1 1 1 2 4 1 1 2 2 2 1 3  
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TABLE 7.la. DATA FOR RUNS 7.1-7.2 

Stream 1 2  3 4 5 6 7 8  

Matrix A (1 1 -1 1 1 
1 -1 (= incidence b -1 

matrix) 1 C -1 -1 

2 4 1 1 2 2 

d -1 1 -1 

1 1  Y 

7.2.1 7.2.2 7.2.3 

6/a = 3.5 ta 0.560 0.683 0.121 
pb 0.316 0.321 0.014 

Run 

@i 0.5 0.5 0.5 

TABLE 7.lb. COMPUTER RESULTS FOR RUN 7.1 

7.2.3 7.2.4 7.2.1 7.2.2 7.2.3 7.2.4 7.2.1 7.2.2 7.2.4 7.2.1 7.2.4 

1.0 1.0 0.2 0.2 1.0 1.0 0.125 0.125 0.125 0.5 0.5 
0.684 0.497 0.389 0.220 0.545 0.746 0.087 0.058 0.013 0.576 0.091 
0.314 0.129 0.189 0.099 0.154 0.249 0.&39 0.035 0.002 0.329 0.018 

- 

Power is 
Stream 1 2 3 4 5 6 7 8 statistically 

3 f 4  4 + 3  3 + 4  3 + 4  3 + 3  3 + 3  3 + 3  3 + 3 same for: 
do! + dii 

6/a=3.5 ta 0.393 0.399 0.397 0.395 0.466 0.467 0.465 0.471 (1,2,3,4) 
0.211 0.218 0.211 0.211 0.247 0.249 0.248 0.251 (5,6,7,8) 
0.746 0.748 0.745 0.749 0.818 0.819 0.818 0.819 (1,2,3,4) 

Pb 
6/a = 5.0 Pa 

@b 0.264 0.269 0.261 0.263 0.265 0.265 0.264 0.259 (5,6,7,8) 

TABLE 7.2a. STANDARD DEVIATIONS FOR RUN 7.2 

Stream 1 2 3 4 5 6 7 8 
@-vector 

7.2.1 0.5 0.2857 0.5 0.125 0.2 0.125 0.5 0.2857 
7.2.2 0.125 0.5 0.5 0.2857 0.2 0.125 0.2857 0.5 
7.2.3 0.01 0.125 0.5 1.0 1.0 2.0 5.0 0.5 
7.2.4 0.5 0.01 5.0 1.0 1.0 0.125 0.5 2.0 

Stream 1 

Run 7.2.1 a-vector 0.5 
a/@ = 2.0 Pa 0.158 

Pb 0.117 
a/a = 3.5 Pa 0.551 

c b  0.325 
6/a = 5.0 Pa  0.882 

P b  0.315 
6 / u  = 8 Pa 0.999 

P b  0.018 

TABLE 7.2b. COMPUTER RESULTS FOR RUN 7.2 

2 

0.2857 
0.144 
0.068 
0.504 
0.143 
0.796 
0.063 
0.958 
0.0002 

3 

0.5 
0.165 
0.116 
0.560 
0.316 
0.893 
0.283 
0.998 
0.012 

4 

0.125 
0.030 
0.016 
0.084 
0.039 
0.192 
0.070 
0.536 
0.104 

5 

0.2 
0.105 
0.062 
0.389 
0.189 
0.741 
0.217 
0.983 
0.018 

6 

0.125 
0.029 
0.014 
0.087 
0.039 
0.207 
0.080 
0.574 
0.107 

7 8 

0.5 
0.165 
0.121 
0.576 
0.329 
0.902 
0.301 
0.999 
0.011 

0.2857 
0.147 
0.071 
0.519 
0.147 
0.810 
0.068 
0.960 
o.Ooo1 

Run 7.2.2 a-vector 0.125 0.5 0.5 0.2857 0.2 0.125 0.2857 0.5 
6/a = 3.5 Pa 0.059 0.694 0.683 0.347 0.220 0.058 0.443 0.736 

e b  0.031 0.301 0.321 0.152 0.099 0.035 0.183 0.514 

Run 7.2.3 a-vector 0.01 0.125 0.5 1.0 1.0 2.0 5.0 0.5 
6/a = 3.5 Pa 0.005 0.014 0.121 0.684 0.545 0.799 0.836 0.134 

0.063 - f ib  0.001 0.006 0.014 0.314 0.154 0.640 0.771 

Run 7.2.4 a-vector 0.5 0.01 5.0 1.0 1.0 0.125 0.5 2.0 
6fa = 3.5 Pa 0.083 0.007 0.836 0.497 0.746 0.013 0.091 0.792 

0.639 - p b  0.015 0.002 0.772 0.129 0.249 0.002 0.018 

TABLE 7 . 2 ~ .  COMPARATIVE RESULTS FOR RUN 7.2 

Stream 3 A 5 fi 7 
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Figure 8. Network for run 8. 

TABLE 8a. DATA FOR RUN 8 

Stream 1 2  3 4 5 6 7 8  

Matrix A a 1  1 -1 -1 
(= incidence b 1 -1 -1 
matrix) C 1 -1 

d -I 1 I -1 

1 1  Y 2 1 2 1 1 1 

TABLE 8b. COMPUTER RESULTS FOR RUN 8 

Power is 

doc + du 3 + 4  4 + 4  4 + 3  4 + 2  2 + 4  3 + 4  3 + 3  4 + 3  same for: 
Stream 1 2 3 4 5 6 7 8 statistically 

6/a=3.5 [a 0.401 0.332 0.404 0.520 0.527 0.400 0.422 0.396 (1,3,6,8) 
pb  0.202 0.178 0.205 0.271 0.273 0.203 0.212 0.197 and (4,5) 

t 
1 .o 

POWER 

0.5 

0 
1 2 j 4 5  6 I 8 a/u 

F@we 9. Dependence d the power d thetesl on the ratk 6/afor M 4. 
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